
33

DSM: A Case for Hardware-Assisted Merging of DRAM
Rows with Same Content

SEYED ARMIN VAKIL GHAHANI∗, Pennsylvania State University, USA
MAHMUT TAYLAN KANDEMIR, Pennsylvania State University, USA
JAGADISH B. KOTRA, AMD Research, USA

The number of cores and the capacities of main memory in modern systems have been growing significantly.
Specifically, memory scaling, although at a slower pace than computation scaling, provided opportunities
for very large DRAMs with Terabytes (TBs) capacity. Consequently, addressing the performance and energy
consumption bottlenecks of DRAMs is more important than ever.

DRAM memory refresh operation is one of the main contributing factors to the memory overheads, espe-
cially for large capacity DRAMs used in modern servers and emerging large-scale data centers. This paper
addresses the memory refresh problem by leveraging the fact that most cloud servers host virtualized systems
that use similar kernels, libraries, etc. We propose and experimentally evaluate a novel approach that exploits
this observation to address the DRAM refresh overhead in such systems.

More specifically, in this work, we present DSM, a light-weight hardware extension in memory controller
to detect the pages with same content in memory and refresh only one of them and redirect the requests to the
others to this page. Our detailed experimental analysis shows that the proposed DSM design can reduce 99th
percentile memory access latency by up to 2.01x, and it also reduces the overall memory energy consumption
by up to 8.5%.

CCS Concepts: •Hardware→Dynamicmemory; Power estimation and optimization;Mem-
ory and dense storage; • Software and its engineering → Memory management.
Additional Key Words and Phrases: DRAM; Memory Refresh; Virtualized systems; KSM
ACM Reference Format:
SeyedArminVakil Ghahani,Mahmut TaylanKandemir, and Jagadish B. Kotra. 2020. DSM:ACase forHardware-
Assisted Merging of DRAM Rows with Same Content. Proc. ACM Meas. Anal. Comput. Syst. 4, 2, Article 33
(June 2020), 26 pages. https://doi.org/10.1145/3392151

1 INTRODUCTION
Thanks to Moore’s law, compute cores have evolved from high Instruction Level Parallelism (ILP)-
based uni-core systems toThread Level Parallelism (TLP)-basedmulti-core andmany-core systems.
Additionally, modern cloud environments started employing several heterogeneous computing
resources, including CPUs, GPUs, and FPGAs [2, 16, 33, 35, 59, 64]. To cope with the memory
demands imposed by these computing elements, data center environments started deploying high
capacity memory resources or dis-aggregated memories [50, 51] that run into several Terabytes
∗Seyed Armin Vakil Ghahani was mentored by Jagadish Kotra on this project.

Authors’ addresses: Seyed Armin Vakil Ghahani, arminvakil@psu.edu, Pennsylvania State University, State College, PA,
16802, USA; Mahmut Taylan Kandemir, kandemir@psu.edu, Pennsylvania State University, State College, PA, 16802, USA;
Jagadish B. Kotra, jagadish.kotra@amd.com, AMD Research, Austin, Texas, 78735, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
2476-1249/2020/6-ART33 $15.00
https://doi.org/10.1145/3392151

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

https://doi.org/10.1145/3392151
https://doi.org/10.1145/3392151

33:2 Seyed Armin Vakil Ghahani et al.

img-dnn masstree moses silo sphinx xapian GMean
0

2

4

6

8

10

12
4GB 8GB 16GB

P9
9

M
em

or
y

Ac
ce

ss
 L

at
en

cy
 Im

pr
ov

em
en

t

Fig. 1. The 99th percentile memory access latency improvement when memory refresh is disabled in the
system for 4GB, 8GB, and 16GB DRAMs.

(TBs) of capacity [4, 5, 18, 20, 23, 34, 63]. To address this demand, memory capacity has increased
from several hundred Megabytes (MBs) to Gigabytes (GBs) to several Terabytes (TBs) of DRAM
memory. Although computation and memory capacity have scaled over the years, the number of
pins connecting DRAM memory to computation cores have not scaled at the same pace, causing
DRAM memory bandwidth per core to reduce over time [6–9]. This leads to a reduced number of
memory channels per core, allowing memory scaling to confine to a channel. The ramifications
of such scaling in DRAM capacity per channel has resulted in an increased number of rows per
DRAM bank.

This type of memory scaling has presented unique problems for DRAM-based memories where
the data is volatile and requires a periodic refresh. Unfortunately, DRAM refresh poses significant
challenges with the scaled memories, especially since the retention time has not changed and
remained constant. Consequently, a greater number of DRAM rows are to be refreshed within the
same retention time, causing DRAM refresh to present energy and performance bottlenecks.

First, DRAM refresh contributes to a noticeable portion of power consumption in data centers.
Due to the massive scale at which these data centers operate, power consumption plays a signifi-
cant role in the Total Cost of Ownership (TCO) of these environments. DRAM power is slated to
consume approximately 18% of the total power in a data center environment [11, 22, 27, 49, 81].
Further, of the total DRAM power, DRAM refresh accounted for 10-50% in 2Gb-64Gb DRAM de-
vices [38, 55, 68]. Consequently, DRAM power optimizations play a crucial role in reducing the
overall cost of ownership in data center environments.

Second, DRAM refresh imposes performance hiccups in memory access latency, which is ex-
pected to be even more problematic in larger DRAMs. One of the important performance metrics
in cloud environments is tail latency of the system that plays a major role in theQuality-of-Service
(QoS) of these systems [19]. Prior work [19, 21, 47, 60, 67, 83] show that different components in
the system contribute to the tail latency, from hardware to application-level sources [47]. Mem-
ory access latency could adversely impact the tail latency for memory-intensive applications, as
reported by Li et al. [47]. One of the significant memory events that contributes to memory ac-
cess tail latency is the memory refresh operation, which is expected to be even more problematic
in larger DRAMs. Figure 1 shows the improvement of the 99th percentile memory access latency
of the system when memory refresh is disabled for different DRAM capacities. Therefore, DRAM
refresh contributes significantly in the performance as well as consumed energy owing to the
increased memory capacity in the data center environments.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:3

In this paper, we present, DRAM Same-Row Merging (DSM), a hardware extension that allevi-
ates the overhead of DRAM refreshes. Our design leverages content similarity in DRAM rows to
minimize DRAM refresh overheads. More specifically, DSM architecture skips refreshing rows that
contain same data values, thereby saving DRAM refresh energy as well as reducing the adverse
impact of DRAM refresh latency on the critical path of the on-demand requests stalled by refresh
operations. This opportunity has been leveraged in software space by Kernel Same page Merging
(KSM) [53, 79] for virtualized systems. KSM uses this information to de-duplicate pages containing
the same content to savememory capacity. However, KSM leads to high performance penalties and
significant tail latency overheads [74] as it breaks huge pages, and needs TLB shoot-downs [46, 65],
which DSM completely eliminates.

Overall, in this work, we make the following contributions:
• We present a detailed analysis of the replication of memory contents for virtualized systems
and discuss how to exploit this information for reducing the memory refresh overhead in
the system.

• Based on the characterization results, we propose a low-overhead hardware extension (DSM)
to skip refreshing duplicated rows in memory.

• We evaluate DSM on tail-latency sensitive and SPEC2006 applications and observe up to
2.01x improvement in 99th percentile memory access latency by skipping up to 47.1% of
the memory refresh commands. Also, DSM improves IPC by up to 4.1% and reduces overall
memory energy consumption by up to 8.5%. We also estimate up to 8.2% improvement of
99th percentile application latency.

2 BACKGROUND
In this section, we present a brief primer on the basic organization of DRAM, cover some details on
how DRAM cells are refreshed, go over the in-memory computing techniques, and finally touch
upon de-duplication in software space.

2.1 Basic DRAM Organization
DRAMs are organized hierarchically and are controlled by on-chip integrated memory controllers,
as illustrated in Figure 2. Eachmemory controllermanages Dual In-lineMemoryModules (DIMMs)
connected to it over a DRAM channel. Each DIMM is further divided into ranks, which are in turn
composed of banks. For example, if there are two ranks per DIMM and eight banks per rank, we
have a total of 16 banks per DIMM. Each DRAM bank consists of DRAM rows which are a series
of DRAM cells connected horizontally by word-lines and vertically by bit-lines. DRAM cells are
density-optimized and are comprised of 1T-1C cells.The access transistor (1T) and charge capacitor
(1C) cells are arranged as a 2D mesh, connected by the horizontal word-lines and vertical bit-lines.
Further, the bit-lines connect the DRAM cells to sense amplifiers.

Upon encountering memory access, memory controller issues a DRAM row activate tRAS com-
mand that connects all the DRAM cells connected to a DRAM row word-lines to the bit-lines. This
causes the charge in DRAM rows to flow into the bit-lines, causing a deviation in the charge on the
bit-lines. This deviation in charge in the bit-lines is sensed and amplified by the sense amplifiers,
enabling the amplified charge to reside in the DRAM row-buffer. Once the tRAS duration elapses,
memory controller issues a tCAS command, which reads the data corresponding to the cache line
to on-chip over the memory channel. If the data needs to be read from a different row in the same
bank and the row-buffer contains an open row, memory controller issues a precharge (tPRE) com-
mand, which closes the currently open row in the row-buffer, before issuing an activate command
corresponding to the next read or write.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:4 Seyed Armin Vakil Ghahani et al.

MemCtrl MemCtrl

Cores / Caches

On-chip

Off-chip

Bank Bank

Bank Bank

...
...

Bank Bank

Bank Bank

...
...

B
it

 L
in

e

Word Line

R
o

w
 D

ec
o

d
er

Row Buffer

Rank Rank ...
...

...
...

Fig. 2. DRAM organization.

2.2 DRAM Refresh
DRAM cells are volatile and lose charge over time. To maintain data integrity, DRAM cells need
to be refreshed periodically. The data retention time of a DRAM is referred to as DRAM refresh
window (tREFW). This DRAM retention time (tREFW) is typically in the order of several milliseconds,
depending on the process variation of the DRAM cells and the operating temperature. For a DRAM
operating in temperatures less than 85 deg. C, the tREFW is typically 64 msec, while it becomes
32 msec for a system operating at temperatures greater than 85 deg. C. Thus, depending on the
operating temperature and the cell process variation, rows in a DRAM need to be refreshed with
a certain frequency. A DRAM refresh command to a row essentially activates the row into the
row-buffer and precharges it.

DRAMmemory controllers split the tREFW retention time into small refresh intervals (tREFI) and
issue a refresh command once every tREFI. Typically, tREFI is in the order of several microseconds.
Depending on the operating temperature, the tREFI is either 7.8 usec or 3.9 usec. Further, depending
on the type of the DRAM (e.g., regular DDR-x [used in desktops/servers] versus LP-DRAM [used
in mobile environments]), there are two types of refresh granularities: (i) all-bank refresh and (ii)
per-bank refresh. In all-bank refresh, all the banks in a rank are refreshed with a single refresh
command. Thus, none of the banks in a rank is available for servicing the on-demand requests
during a refresh operation. In comparison, in the per-bank refresh, a refresh command refreshes
only the DRAM rows in a single bank, thereby enabling the other banks in the same rank to be
available to serve on-demand accesses.

We want to emphasize that DRAM refresh operations involve activating and pre-charging all
the DRAM rows in a refresh window of few milliseconds to maintain data integrity and, as a
result, they adversely affect the performance of the system. The refresh operation (in an all bank
refresh) locks the whole rank and consequently degrades the memory system throughput [55].
Moreover, the memory access latency also increases as the accesses to the ranks that are being
refreshed encounter delays [15, 31, 55, 61, 62]. Further, DRAM refresh operations also degrade the
energy efficiency in the system [15, 55]. Finally, the negative impact of DRAM refresh operations
is expected to be even more problematic with increasing density [15, 41, 43, 54, 55, 62].

2.3 RowClone
A large body of work has been explored in the in-memory and near-memory designs to address
theMemoryWall problem [1, 25, 26, 28, 37, 42, 45, 48, 57, 66, 72, 76]. One of the main advantages of
in-memory computation is the reduction of required bandwidth and energy to move data between
processor and memory. Bulk data copy is one of the common bandwidth-intensive operations that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:5

has been studied by Seshadri et. al [72, 73]. RowClone is a technique developed for copying a bulk
of data from one location in physical memory to another, without the need of bringing the data on-
chip [72]. Our proposal leverages RowClone hardware modification to copy data in case of write
accesses to rows that are merged as explained later in Section 4.

2.4 Kernel Same-Page Merging
Virtualization is widely employed today in both desktop and data center applications. Virtual ma-
chines (VMs) are especially appealing for server consolidation to fully utilize the underlying phys-
ical machine resources in a safe manner [30]. In such an environment, kernel same-page merging
(KSM) [3] reduces the memory footprint by de-duplicating pages that have the same content.

When KSM detects two pages with the same content, if neither of the two pages was merged
before, it modifies one of them to “kpage” (KSM page), makes it read-only and frees the other
page [53]. If one of the pages is already a kpage, it just frees the other page. In the next step, KSM
changes the page table entry (PTE) of the other page to point to the kpage. Consequently, both
page table entries point to the same page in the system from now on. Upon a write request to a
kpage, an exception occurs, and OS copies the content of the page to a free page in memory and
updates the page table accordingly – a procedure similar to copy-on-write in Linux.

KSM could lead to high performance degradation and high tail latency in the system [74]. First,
KSM consumes CPU cycles to execute de-duplication and pollutes caches to calculate the check-
sum of pages and perform comparison among them. Skarlatos et al. [74] proposed a hardware
extension called PageForge, which addresses this problem by calculating checksum and compar-
ing pages in memory controller. However, both KSM and PageForge cause TLB shoot-downs upon
every de-duplication and un-merging of a de-duplicated page. In addition, KSM and PageForge ag-
gressive de-duplication approach typically results in breaking huge pages [46], which in turn leads
to increased cost for address translation, a critical overhead for virtualized systems. Therefore, in
common case, KSM is configured to only perform de-duplication when the amount of free memory
reaches below some threshold, 20% by default.

3 MOTIVATION
Server architectures consist of a high number of cores and large capacity DRAMs [70] or dis-
aggregated memories [50, 51]. However, the energy and performance overheads of existing DRAM
devices increase with larger capacity and DRAM refresh contributes significantly to this overhead.

Memory refreshes contribute to a considerable portion of the energy consumption in the system,
which becomes an even more significant concern as systems employ higher capacity DRAMs [5,
38, 41, 54, 55, 68]. Figure 3 summarizes this trend for a range of DRAM capacities. As shown in this
figure, the percentage of energy spent refreshing memory increases with larger DRAM capacities,
emphasizing the fact that reducing the memory refresh overhead leads to higher energy savings
as systems move toward larger DRAM capacities.

Moreover, DRAM refresh impacts performance negatively as the DRAM density increases [5, 38,
43, 55, 68]. In this context,Qureshi et. al [68] show that the potential speedup that could be achieved
by removing memory refreshes is about 4% in an 8Gb device and increases to 54% in a 64Gb device.
Figure 1 plots the 99th percentile memory access latency improvement for the Tailbench suite [40]
when disabling DRAM refresh (Ideal DRAM) for three different DRAM chip densities. It can be
observed from these results that memory access tail latency improvement brought by removing
memory refresh overhead increases significantly as the chip densities become larger.

In this work, we address both energy and performance overheads brought by DRAM refreshes
in server architectures by reducing the unnecessary memory refresh operations, leveraging the
fact that cloud server architectures mostly host virtualized machines. VMs typically use the same

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:6 Seyed Armin Vakil Ghahani et al.

4GB 8GB 16GB 32GB 64GB
0%

10%

20%

30%

40%

50%

60%

Re
fr

es
h

En
er

gy

Fig. 3. DRAM refresh contribution to total DRAM energy consumption for 4GB, 8GB, 16GB, 32GB, and 64GB
capacities.

set of kernels, libraries, and even applications and, as a result, there can be many rows in memory
that have the same content.

Our design detects the rows with the same content and it refreshes only one row, instead of
refreshing all of them. This opportunity is exploited by KSM [3] in virtualized systems domain to
reduce memory footprint. However, KSM causes high performance penalties as it leads to splinter-
ing large 2MB pages into base 4KB pages (to allow de-duplication) and consequently TLB shoot-
downs [46, 65].The use of KSM in such virtualized systems executing latency-sensitive applications
could increase the 95th percentile latency by up to 5X [74], which is the key performance metric
for such applications [19, 40, 78]. Our approach, on the other hand, uses same content values in
virtualized systems for an entirely different purpose.

Figure 4 plots the pages that have the same content in the Tailbench suite [40] and different
mixes of Tailbench and SPEC2006 [32] applications by KSM from the time the system boots-up
until the program ends. For this figure, we evaluated four VMs (each 2GB memory) on Intel Core
i7-8700K with 8GBmain memory and let KSM to de-duplicate as many pages as it can in 5 minutes.
After this bootup time, we execute different mixes of benchmarks on 4 VMs, as described with
more details in Section 6. One can see from these results that the number of de-duplicated pages
can be from kernels and libraries before the benchmark execution and also, after the benchmark
execution in some benchmarks. For example, in Img-DNN, 260K and 150K pages are de-duplicated
by KSM before and during the benchmark execution, respectively.

Based on these observations, we leverage the pages with same content in memory to reduce
the total number of DRAM refreshes for both reducing energy consumption and improving per-
formance.

4 DSM DESIGN
We propose DSM, a hardware extension that leverages same content rows in memory to address
the high performance and energy overhead of DRAM refresh in server environments. Our goal is to
detect the rowswith same content in DRAMand only refresh one row (referred to as representative
row) from each group (of same content rows). Since servers typically host virtualized systems,
there is a significant number of rows that have same values in such systems. Thus, we exploit this
opportunity and group the rows with the same content as one, removing the need for refreshing
all these memory rows.

To collect the required information for such a design goal, we use an important data structure,
Mapping Table, to guarantee that data are retrievable even if the corresponding row has not been
refreshed. We use the term merged rows to refer to the rows whose refreshes are skipped while

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:7

0 2 4 6 8 10 12
Time (min)

0

1

2

3

4

5

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(a) Img-DNN

0 2 4 6 8
Time (min)

0

1

2

3

4

5

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(b) Masstree

0 2 4 6 8 10
Time (min)

0

1

2

3

4

5

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(c) Moses

0 2 4 6 8 10 12
Time (min)

0

1

2

3

4

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(d) Sphinx

0 2 4 6 8 10 12 14
Time (min)

0

1

2

3

4

5

6

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(e) Xapian

0 2 4 6 8 10 12 14 16 18 20 22
Time (min)

0

1

2

3

4

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(f) Mix 1

0 2 4 6 8 10 12 14 16 18 20 22
Time (min)

0

1

2

3

4

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(g) Mix 2

0 2 4 6 8 10 12 14 16 18 20
Time (min)

0

1

2

3

4

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(h) Mix 3

0 2 4 6 8 10 12 14 16 18 20
Time (min)

0

1

2

3

4

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(i) Mix 4

0 2 4 6 8 10 12 14 16 18 20
Time (min)

0

1

2

3

4

Sa
m

e-
Va

lu
e

Pa
ge

s (
10

0K
)

(j) Mix 5

Fig. 4. The number of pages with the same content from the system bootup until the end of applications.

their accesses are redirected to their corresponding representative row by memory controller. In
our design, the information stored in the Mapping Table assists memory controller in identify-
ing whether the row is merged or not upon memory access. Memory controller then issues the
appropriate commands to keep memory in a consistent state.

4.1 Representative Rows
The naïve solution to group rows with same value as one is to maintain row→ row mapping for all
rows in memory in Mapping Table. Therefore, each entry in Mapping Table shows whether the
corresponding row in DRAM is mapped to another row and if so, which row is its representative.
Consequently, entries in Mapping Table should be large enough so it could point to any other row
in DRAM since any row in DRAM can be a representative row. Memory controller then can use
Mapping Table to redirect merged rows’ memory accesses to their representatives. Additionally,
memory controller uses this information to only refresh representative rows, instead of all the
rows that are merged.

However, implementing this naïve approach is not practical since it leads to high hardware
overhead for Mapping Table. Moreover, this scheme increases the performance penalty in case of
a write to a representative row. Upon this event, memory controller should copy the content of
the representative row to all rows that are mapped to it. Also, the mapping of all those merged
rows has to be updated by memory controller. As a result, the naïve solution must keep track of
the rows that are mapped to each representative row.

Instead, we reserve a set of rows, called R-Rows, which are not accessible by OS and are meant to
keep the content of the representative rows. Therefore, each row can only be mapped to one of the
R-Rows and we maintain row → R-Row in Mapping Table. Consequently, each entry in Mapping
Table is the index of the R-Row that the corresponding row has been mapped to. The rows will be
mapped to a reserved index, if they are not merged. Additionally, our proposal will not incur the
high overhead of write accesses to representative rows in comparison to the naïve solution. DSM
only allows R-Rows to be representative, a design choice that guarantees there will not be any
write access to representative rows since they are not accessible by OS. Moreover, merged rows
are mapped to the R-Rows in the same channel which averts cross-channel mappings in DSM
architecture.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:8 Seyed Armin Vakil Ghahani et al.

Counter/Checksum

R-Rows

R-Row Index

Rows accessible by OS

...

M
ap

p
in

g
Ta

b
le

Reserved Rows

Mapping Table

2
K

1
3

2
~6

2K

PFN
2.

98
1

R
o

w
 D

e
co

d
er

Row Buffer

...

C
o

u
n

te
r/

C
h

ec
ks

u
m

R-Row
Id

R-Row Index

R-Row Index

Cnt

Cnt

Cnt

CV

CV

CV

(a)

(b)

(c)

Fig. 5. (a) Overview of DSMmetadata in each bank (b) Counter/Checksum array data structure. (c) Mapping
Table data structure.

Figure 5(a) illustrates possible location of R-Rows in each bank. Please note that it is not required
to keep R-Rows in any specific rows in memory – they could be in any row, as long as they are not
accessible by OS.

4.1.1 R-Row Counter. A 1-byte counter is associated with every R-Row that captures the number
of rows that have been mapped to this R-Row and, as a result, are not refreshed. Upon a write to a
row that has been merged with an R-Row, the corresponding R-Row counter will be decremented.
When the counter of an R-Row reaches zero, this R-Row is freed by memory controller and can be
allocated to another row value. This counter is also used by Replacement Procedure, which will be
discussed in Section 4.4.5.

4.1.2 R-Row Checksum. Values that are captured by R-Rows are perfect candidates for comparing
against the rows that have not been merged and fetched by DSM for potential merging. Therefore,
we keep a 1-byte checksum for every R-Rows and use it to determine the potential candidate rows
that can be merged. As the R-Row content is not expected to be modified frequently, maintaining
the checksum is quite useful since it reduces the need to calculate the checksum in every merging
period for R-Rows.

R-Row Counter and Checksum arrays are located in the same data-structure and are kept off-
chip to reduce the overhead of DSM, as shown in Figure 5(b). Each entry of this data-structure
contains two 1-byte values: (i) Cnt: the number of rows that are mapped to this R-Row, and (ii) CV:
Checksum Value of this R-Row. These arrays are cached for faster access by memory controllers.

4.2 Mapping Table
Mapping Table stores the index of the R-Row that each row has been mapped to, as depicted in
Figure 5(c). If the row is not merged we use an reserved index indicating this case. Additionally,
we reserve another index to indicate if the row contains zero value, Zero Row, without allocating
an R-Row to this value. This data structure is necessary for the correctness of the approach, as we
only refresh a subset of rows in the refresh intervals – allocated R-Rows and rows that are not
merged. Using the information provided by the Mapping Table, memory controller is able to issue
correct commands based on the state of the rows and guarantee that no data will be lost.

4.3 Caching DSMMetadata
Mapping Table has an entry for each row inmemory and, as a result, it is not practical to keep it on-
chip. In addition, keeping R-Row Counter and R-Row Checksum arrays on-chip is also expected
to result in too much overhead. Observing this, DSM distributes different parts of the Mapping
Table, R-Row Counter and R-Row Checksum array over different banks in memory, as illustrated

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:9

1

Write Queue

Read Queue

Controller

Mapping Table
Cache

Refresh
Bitmap

2

65

3

4

8

7

R-Rows Counter/
Checksum Cache

Memory Controller

Fig. 6. DSM design overview, and interaction of DSM logic and other components of memory controller.

in Figure 5(a). On the other hand, the information captured by Mapping Table is crucial for serving
data accesses. Accesses to rows that have been merged (and consequently not being refreshed)
should be redirected to the corresponding R-Row; otherwise, the requests would be served by
incorrect data (from the refreshed-skipped rows). Also, accessing off-chip Mapping Table results
in a significant latency addition to on-demand memory requests. Since some rows are accessed
more frequently than others (hot pages), we maintain an on-chip cache that holds the Mapping
Table information in memory controller for faster redirection. Additionally, we preserve another
on-chip cache for R-Row Counter and R-Row Checksum array entries, as shown in Figure 6.
Upon encountering amiss inMapping Table Cache (MTC), additional memory access is required

to bring the mapping information on-chip. As a result, the MTC’s hit rate is an important perfor-
mance indicator of DSM to avoid extra off-chip memory accesses. Thus, our proposed design also
updates the page walk procedure in such a way that, after a TLB miss is resolved, DSM brings the
corresponding Mapping Table entry for the page that caused the TLB miss on-chip. Such a proac-
tive prefetching of the remapping table entry into the MTC upon a page walk results in reduced
latency of fetching the Mapping Table entry to MTC. This approach is expected to improve the
performance of the MTC significantly, as every page that is going to be accessed for the first time
by a processor should access its page table entry first. DSM leverages this opportunity to bring the
corresponding Mapping Table entry to MTC before the actual memory access.

4.4 Putting It All Together
In this subsection, we describe in detail how the different components of DSM interact with each
other. Also, we discuss howmemory controller handles accesses to memory and refresh operations
in the presence of our hardware extension. Figure 6 illustrates the high-level overview of DSM as
well as the interactions between different components.

4.4.1 DRAM Read Operation in DSM. DRAM read requests reside in a DRAM read queue. As the
request is queued in the DRAM queue, MTC is accessed 1⃝ to retrieve the true row address cor-
responding to the read request 2⃝. Memory controller changes the address of the read request 3⃝
to the corresponding R-Row in case the row has been merged. If the mapping indicates that the
row is merged with a Zero Row, the request can be serviced without accessing the DRAM, and the
corresponding entry in the read queue will be removed.

4.4.2 DRAM Write Operation in DSM. Servicing write request also involves accessing MTC 1⃝
to obtain the mapping information and state of the accessing row 2⃝. The write request for rows
that are not merged will be serviced with no additional overhead since no update to any DSM
metadata is required in this case. On the other hand, if the write request belongs to a merged

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:10 Seyed Armin Vakil Ghahani et al.

row, DSM has to copy the content of its R-Row 4⃝ to this row before sending the actual write
request. This operation is necessary to retrieve the previous value of the row since the refreshes
to the merged rows are skipped. We use RowClone [72] to perform this row-copy operation in-
memory, in an attempt to reduce the overhead of this operation. Memory controller does not issue
a RowClone [72] command if the row has been merged into a Zero Row. As a result, no additional
overhead would be incurred in this case. Once the write is done, the Mapping Table entry for the
written row 1⃝ and the corresponding R-Row Counter 5⃝ (for non-zero merged pages) need to be
updated for future accesses.

4.4.3 DRAM Refresh Operation in DSM. DSM allows refreshing a subset of rows in each bank,
based on the state of rows in the system. To be more specific, memory controller uses Refresh
Bitmap to issue refresh commands only for rows that are not merged 8⃝. The Refresh Bitmap is
created from the contents of the Mapping Table on the fly before each refresh interval 7⃝. Since
DRAM refresh command is only issued once in a refresh interval of tREFI, DSM can gather this
bitmap in the background for the next refreshed rows without increasing the refresh operation
duration. DSM collects this information from the corresponding entries of the Mapping Table for
the bank that is going to be refreshed, and stores in a 4KB flip-flop in Refresh Bitmap.

The content of the Refresh Bitmap need to be updated if a write is incurred to one of the rows
populated in the Refresh Bitmap in the background before the refresh is issued. During the refresh
operation, refresh bitmap contents are written to the additional buffer at the refresh address reg-
ister present in the DRAM device. This enables skipping the refreshes to the rows based on the
bit-vector written by memory controller.The additional support we assume to write this bit-vector
to the DRAM substrate is similar to that presented by researchers in [13]. Depending on the type
of refresh employed by the DRAM, that is, either per-bank refresh or all-bank refresh [15, 43], a
refresh command issued by memory controller can refresh DRAM rows within a single bank or
all the banks in a rank. However, since DSM communicates the bit-vector per-bank, in the case of
an all-bank refresh, multiple bit-vectors need to be written to separate private per-bank buffers in
the DRAM device for the refresh module in DRAM to skip refreshes to DRAM rows successfully,
similar to [13] proposal.

4.4.4 Periodic Content Checking. DSM fetches 400 rows that are not merged every five millisec-
onds for potential merging. DSM calculates the checksum value of each row that is fetched for
performing the comparison. It, then, searches for a checksum match in R-Rows checksum cache
in memory controller 5⃝. If DSM finds an R-Row with the same checksum 6⃝, it fetches the corre-
sponding R-Row and checks whether they are same or not, also in memory controller. In case of a
match, DSM proceeds to merge the rows, which involves an update to the Mapping Table 1⃝, and
R-Row Counter Cache 5⃝. In case DSM could not find any match in R-Rows, it searches for a free R-
Row to add this fetched row to R-Rows for potential merges in future. If DSM finds a free R-Row, it
will copy the fetched row to the free R-Row and update the Mapping Table and Counter/Checksum
Array accordingly. Otherwise, DSM fails to merge the fetched row and discards its value.

4.4.5 Replacement Procedure. R-Rows in our hardware are proposed to reduce the performance
overhead of write accesses to R-Rows, and also to reduce the hardware overhead of each Mapping
Table entry. However, since the number of R-Rows is limited, it is more efficient to keep values
in the R-Rows that have higher sharing opportunities. In order to guarantee that R-Rows are not
populated with values that are not frequent, we employ a Replacement Procedure. This procedure
is invoked when the number of free R-Rows in a bank reaches a 𝑇𝑙𝑜𝑤 threshold and continues to
free R-Rows that have low sharing patterns until the number of free R-Rows in the corresponding
bank reaches 𝑇ℎ𝑖𝑔ℎ .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:11

The victim candidates are chosen from the information that is extracted from the R-Row counter
data structure 5⃝. R-Rows with zero counter value are the best candidates for eviction since there
is not any row that is mapped to them and there is no need to modify Mapping Table. Freeing an
R-Row with a non-zero counter needs more caution as the rows(s) that are mapped to this R-Row
have to be copied (via RowClone [72] command) before this R-Row is freed and the Mapping Table
also needs to be updated. Although the counter provides enough information to choose the victim,
we do not have enough information to identify the rows that have been mapped to this R-Row. As
a result, we use refresh intervals to extract this information and perform Replacement Procedure,
as we already fetch the Mapping Table to create the Refresh Bitmap.

5 DISCUSSION
In this section, we touch upon the interactions of DSM with the different software and hardware
components of the overall system.

5.1 Interactions with Cache Coherence
All modern processors employ caches that might contain data in the modified state with respect
to the content in memory. Since DSM architecture performs content similarity based on the data
in DRAM, it is possible that DSM can aggressively merge a DRAM row with another though one
of its cache lines is in the modified state in the cache. This is possible as DSM is unaware of the
modified data in the cache hierarchy. In such scenarios, DSM architecture does not incur any issues
with functional correctness since (i) any load instruction will be served from the recent value in
cache hierarchy (ii) the modified cache line in the cache hierarchy will eventually be written back
to DRAM upon eviction. As a result, if the row that contains the dirty cache block has been merged
prior to the cache block eviction, DSM will unmerge it.

Hence, DSM can pro-actively skip refreshes to rows resulting in a performant and energy-
efficient system without any adverse impact on cache coherence protocols. On the other hand,
prior work [69, 74] have to take into account the data in the cache hierarchy by accessing the
cache multiple times for every cache block in the rows that are being compared. Thus, they con-
sume a lot of cache lookup bandwidth and energy.

5.2 Interactions with KSM
Kernel Same page Merging (KSM) is a software module implemented in hypervisors like VMWare
ESXi and Qemu-KVM [53, 79] that targets de-duplicating memory pages based on the available
free space in the system. Since DSM architecture already performs content similarity and merges
the pages, KSM can potentially leverage the content similarity information from the DSMMapping
Table.

The potential interaction of KSM with DSM is a function of address mapping policies employed
by the hardware to map a physical page to the corresponding memory channel/rank/bank etc. For
example, since DSM maintains the content similarity information at a DRAM row granularity, if
the underlying address mapping policy interleaves across DRAM rows at a page (4KB) granularity,
KSM can readily leverage the content similarity information maintained by the DSM. Thus, KSM
can promptly know which DRAM pages (rows) contain the same content values by reading the
Mapping Table maintained by DSM. Consequently, DSM will have to unmerge the rows that KSM
de-duplicates, which will potentially reduce the number of refreshes skipped by DSM. Thus, DSM
can interact with KSM when the address interleaving across DRAM rows is at page granularity.
However, when the address interleaving across DRAM rows is at a sub-page granularity, KSM
cannot leverage the content similarity information managed by the DSM and will have to perform
the page comparison to understand the content similarity across pages. Therefore, as explained

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:12 Seyed Armin Vakil Ghahani et al.

Table 1. Important architectural parameters of the modeled system.

Component Parameters
Processor 4 cores, OoO 192-entry window, 8-wide

issue, 32/32 LD/ST queue entries, 3GHz
L1I and L1D 32KB per core, 64-byte cache line,

8-way associative
I-TLB and D-TLB 64 entries per core
L2 256KB per core, 64-byte cache line,

16-way associative
Last-level Cache 4MB shared, 64-byte cache line,

32-way associative
Memory Controller One per channel, 64-entry read queue,

64-entry write queue
Main-Memory 8GB DDR3-1600 (8-8-8), 2 channels,

2 rank per channel, 8 banks per rank
64K rows per bank, 4KB per row

Host and Guest Ubuntu Server 16.04,
QEMU-KVM [12] as hypervisor

DSM 32K R-Rows in memory
32KB Mapping Table Cache (MTC)
4KB Counter Checksum Cache
𝑇𝑙𝑜𝑤 = 32,𝑇ℎ𝑖𝑔ℎ = 64

above, DSM will need to unmerge the DRAM rows de-duplicated by KSM, which reduces the
number of skipped refreshes.

5.3 Unallocated Pages
Initially, at bootup time of the system, all rows corresponding to unallocated DRAM rows contain
zero value (for security reasons [44]) as well as Mapping Table. As a result, all rows will merge to
Zero row at bootup, by default and after writes to memory, DSM will unmerge rows, gradually. In
other words, a row in memory will not be refreshed until a write access targeting that row reaches
memory controller. The reduced overhead of refreshing the unallocated rows in our design is a
direct benefit of our design choice to initialize every row to be a Zero row.

Isen et al. [36] uses the semantic directives to remove the overhead of unallocated rows. However,
it only can identify and remove the memory refresh for a subset of what DSM can detect and
eliminate as DSM also detects the zero rows that are allocated, in addition to non-zero values that
DSM identifies. Moreover, Eskimo [36] relies on an ISA modification to convey the information
from the program to the hardware [36], requiring a hardware-software co-design.

6 METHODOLOGY
The server architecture that we model in this work has a 4-core processor and an 8GB main mem-
ory, as described in detail in Table 1. We use Ubuntu Server 16.04 [77] with QEMU-KVM [12] as
the hypervisor in our experiments and run four VM instances. Each VM runs Linux kernel 4.15
and is pinned to a core. We set the size of memory for each VM to 2GB, similar to general-purpose
Linux-based VM instances in Microsoft Azure [59].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:13

Table 2. Evaluated workloads.

Name Benchmarks
Mix 1 libquantum, mcf, img-dnn, xapian
Mix 2 libquantum, mcf, moses, sphinx
Mix 3 libquantum, img-dnn, masstree, moses
Mix 4 libquantum, img-dnn, silo, sphinx
Mix 5 libquantum, masstree, moses, silo
Mix 6 mcf, img-dnn, sphinx, xapian
Mix 7 mcf, masstree, silo, xapian
Mix 8 mcf, moses, silo, xapian
Mix 9 masstree, moses, img-dnn, sphinx
Mix 10 masstree, silo, sphinx, xapian

Table 3. Workloads description.

Benchmark Description QPS
img-dnn Handwriting recognition application 500
masstree Scalable in-memory key-value store 1000
moses Statistical machine translation 100
silo In-memory transactional database 2000
sphinx Speech recognition system 1
xapian Online search engine 500
libquantum Quantum computer simulator library -
mcf Vehicle scheduling in public transportation -

Moreover, in order to estimate the tail latency improvement of proposed approach, we employ
BigHouse [58] simulator to simulate the queuing systemwith a confidence level of 95%;We use the
calculated IPC in gem5 [14] to determine the service rate of an FCFSM/G/1 queuing system, similar
to [60]. Our assumption about M/G/1 queuing system is aligned with prior work [39, 60, 82].

We also evaluated the area overhead and power consumption of our proposal with CACTI [10].

6.1 Experimental Setup
We implement DSM in gem5 [14] using the technique proposed in [71]. We setup gem5 using the
X86KVMCPUmodel, which runs at native speed and we simulate 4 VMs. We wait till all the 4 VMs
are booted. Then we simulate a combination of Tailbench [40] and SPEC2006 [32] benchmarks in
each VM in X86KVMCPU mode until each core runs at least 250 Billion instructions to reach the
region of interest, after which the caches are warmed up for 100 Million instructions using Out-of-
Order cpus. We simulate and report the results of running 1 Billion instructions on each core. More
specifically, we simulate ten mixes of workloads, described in Table 2 from Tailbench suite [40]
and SPEC2006 [32] in three different configurations.

(i) Baseline: Memory controller refreshes all rows in DRAM.
(ii) DSM: Our proposed solution that reduces memory refresh overheads by detecting same-value

rows and refreshing only the R-Rows and rows that are not merged in DRAM.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:14 Seyed Armin Vakil Ghahani et al.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 GMean
0.98

1.00

1.02

1.04

1.06

1.08

1.10
Baseline DSM No Refresh

N
or

m
al

ize
d

IP
C

Fig. 7. Normalized performance results.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Average
0

1

2

3

4

5

6
Baseline DSM No Refresh

99
th

 P
er

ce
nt

le
 M

em
. A

cc
es

s
Im

pr
ov

em
en

t

Fig. 8. 99th percentile memory access latency improvement with DSM.

(iii) Disabled Refresh: In this configuration, we disable DRAM refresh completely. This configura-
tion gives the best case energy and performance improvements and hence serves as our limit
study.

All gem5 simulations are executed on c8220 machines of CloudLab Servers [24].

6.1.1 Benchmarks: We study six applications from the TailBench suite [40] as they represent tail-
sensitive applications that are usually targeted in servers, as well as mcf and libquantum, two
memory-sensitive applications from SPEC2006 [32]. Table 3 gives a brief overview and Queries
Per Second (QPS) of the applications that we used in our evaluation.

7 EVALUATION
7.1 Performance Improvement Results
DRAM refresh has a negative impact on the performance of the system as it delays servicing
the on-demand memory accesses, thereby stalling the server processor. These stalls pose severe
bottlenecks for latency-critical applications. Figure 7 shows the performance improvement of DSM
over baseline. As can be observed, DSM outperforms the baseline in all benchmarks and improves
the performance by 2.4% on average while the maximum improvements are as high as 4.2% in
Mix 5.

The memory refresh operations stall on-demand accesses to DRAM, and this, in turn, leads to
variable response time from memory. As a result, refresh operations can have a significant impact
on 99th percentile memory access latency. Figure 8 plots 99th percentile memory access latencies

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:15

img-dnn masstree moses silo sphinx xapian GMean
0.95

1.00

1.05

1.10

1.15

1.20

1.25

Baseline DSM No Refresh

N
or

m
. 9

9t
h

P
er

ce
nt

ile
 L

at
en

cy

Fig. 9. 99th percentile latency improvement with DSM.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Average
0.80

0.85

0.90

0.95

1.00
Baseline DSM No Refresh

N
or

m
al

ize
d

En
er

gy
 C

on
su

m
pt

on

Fig. 10. Energy consumption results.

for the application programs in our hardware extension. As shown in this graph, our proposed
approach can bring up to 2.01𝑥 reduction in 99th percentile memory access latency. On average,
our design improves 99th percentile memory access latency by 1.86𝑥 .

7.2 Tail Latency Improvement Results
Spikes in the latency of an application could be from different sources [19]. To illustrate the impor-
tance of memory latency and how DSM affects the application tail latency, we simulate a queuing
system for Tailbench suite applications. Figure 9 shows that DSM can improve 99th percentile
latency by up to 8.2% in silo application and 4.4% on average across all tail-latency sensitive appli-
cations.

7.3 Energy Improvement Results
Figure 10 presents the energy consumption results for baseline, DSM and, No Refresh (limit study)
approaches. It can be observed from these results that DSM can reduce the total energy consump-
tion by up to 8.5%, and on average by 6.7%. These energy savings are going to be more signifi-
cant [68] in high-density DRAMs as more cycles are spent refreshing rows as shown in Figure 10.

7.4 Bandwidth Consumption
DSM periodically fetches different rows of memory for page comparison and merges them in case
of a match. As opposed to prior work [53, 69, 74] that drastically consume bandwidth without

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:16 Seyed Armin Vakil Ghahani et al.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10
0

1

2

3

4

5

6
Baseline DSM

Ba
nd

w
id

th
 (G

B/
s)

Fig. 11. Bandwidth consumption of DSM.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Average
0%

10%

20%

30%

40%

50%

Re
fr

es
h

Re
du

ct
on

Fig. 12. Percentage of rows DSM skips refreshing.

increasing the throughput, DSM slightly increases the bandwidth consumption by up to 0.8 GB/s
in Mix 3 without occupying any of cores in the processor, as illustrated in Figure 11.

7.5 Memory Refresh Skipping Results
As explained previously, DSM leverages content similarity across rows and skips refreshing the
corresponding rows. Figure 12 demonstrates the efficacy of DSM as it presents the percentage of
rows that are skipped refreshing. As can be observed, DSM skips refreshing up to 47.1% of the
DRAM rows in masstree application, whereas, it skips refreshing 45.1% across all the workloads,
on average.

7.6 DSM Content Similarity Results
Thenumber of R-Rows that are allocated in DSM contributes to the required area overhead of DSM,
as it affects the bits required in the Mapping Table entries. Figure 13 plots the number of rows that
a value is repeated in memory. For example, it shows that there are around 10K row values in
memory that are repeated twice in all benchmarks (the second data point in each mix). Moreover,
it also indicates that there is a value in memory that is repeated more than 2000 times in all mixes
(the last data point).The number of row values that are repeated more than once is from 29K to 40K
in each mix (sum of all data points except the first one). This figure also shows that the number of
rows whose values are repeated more than 255 times is 4 out of 29K. As a result, we set the length
of each R-Row Counter to 8-bits and do not map more than 255 rows to any given R-Row. In case
of an overflow, DSM allocates another R-Row for this value to avoid losing the merge opportunity.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:17

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(a) Mix 1

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(b) Mix 2

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(c) Mix 3

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(d) Mix 4

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(e) Mix 5

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(f) Mix 6

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(g) Mix 7

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(h) Mix 8

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(i) Mix 9

1E0

1E1

1E2

1E3

1E4

1E5

1E6

Page CountN
um

be
r o

f D
if

er
en

t V
al

ue
s

(j) Mix 10

Fig. 13. Distribution of number of times a value is repeated in memory.

Finally, we decided to allocate 32K rows for this purpose to leverage the same-value opportunity
in DSM.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:18 Seyed Armin Vakil Ghahani et al.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Average
0%

20%

40%

60%

80%

100%
4KB 8KB 16KB 32KB 64KB

M
TC

 H
it

Ra
te

Fig. 14. Mapping Table Cache hit rate results with varying sizes.

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Average
0%

20%

40%

60%

80%

100%
MTC-Read Accesses MTC-Write Accesses

M
TC

 H
it

Ra
te

Fig. 15. Mapping Table Cache hit rate for DRAM reads vs writes.

7.7 Mapping Table Cache Hit Rate Results
The Mapping Table is stored in memory since the size of the Mapping Table is in order of several
Megabytes. To reduce the additional DRAM traffic incurred to fetch the mapping information
from DRAM, DSM design caches the recently accessed Mapping Table entries in a small on-chip
hardware structure referred to as MTC. The size of this MTC plays a crucial role in the overall
performance of our architecture as it governs the additional DRAM traffic incurred to fetch the
Mapping Table information. Figure 14 shows the average on-chip hit rate incurred as a function of
the Mapping Table Cache employed in DSM architecture. As can be observed, on average a 32KB
MTC per channel incurs a hit rate as high as 97.3%. Consequently, we choose 32KB for the MTC
capacity. Furthermore, Figure 15 shows the hit rates inMTC for read vs. write memory requests. As
can be observed, the MTC hit rate is substantially high for both reads and writes, thereby reducing
the mapping traffic to DRAM.

Summarizing the results from Figures 14 and 15, DSM architecture does not incur additional
metadata mapping traffic in the quest of reducing DRAM refreshes.

7.8 DRAM Capacity Sensitivity Results
Figure 16 shows the performance benefit of removing the DRAM refresh overhead for larger mem-
ory capacities in baseline, DSM, and no refresh configurations. DSM architecture achieves 5.5%
and 16.5% on an average for 16GB and 32GB memory sizes, respectively. It can be observed that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:19

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 GMean
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
16GB DSM 16GB No Refresh 32GB DSM 32GB No Refresh

Sp
ee

du
p

Fig. 16. Performance speedup results with varying DRAM capacities.

skipping the refresh of all the rows improves the performance by 35.6% in a server with 32GB
memory capacity. Thus, DSM incurs more improvements in performance and energy with in-
creased memory capacity as it eliminates refreshes to both non-allocated and similar value content
rows [38, 55, 68].

7.9 Design Characteristics
The DSM’s hardware overheads comprise of two major components, viz., (1) On-chip SRAM struc-
tures, and, (2) Off-chip Storage Overheads.

7.9.1 DSM On-chip Overheads: As explained in Section 4, our DSM architecture employs the fol-
lowing additional hardware structures at every memory controller: (1) 32KBMapping Table Cache
(MTC) (2) a 4KB R-Row counter/checksum array (3) a 4KB Refresh Bitmap. Since these are per-
channel, the hardware on-chip structures required by our DSM architecture is negligible.

7.9.2 DSM Off-chip Overheads: DSM contains 32K R-Rows (details in Section 7.6) that results into
128MB hardware overhead in DRAM. Also, each Mapping Table entry needs 15 bits to maintain
the index of the corresponding R-Row. Consequently, the Mapping Table amounts to 1.875MB
hardware overhead for a DRAM channel with 4GB capacity containing 1M rows. In addition, for
each R-Row, DSM needs a 1-byte counter and a 1-byte checksum that sums up to 64KB. Hence, the
off-chip overhead of DSM in memory is 130MB, which is about 3% of the total DRAM capacity per
channel.

Table 4 illustrates the area overhead and power consumption of different on-chip components
of DSM. As it is indicated in this table, our evaluations with CACTI [10] show that DSM amounts
to 0.236𝑚𝑚2 and 0.023𝑊 area and power overheads, respectively, in high-speed 22𝑛𝑚 technol-
ogy devices. For comparing rows and checksum calculation, we employ an ALU, similar to Page-
Forge [74].

8 RELATEDWORK
We categorize the related work into two areas: (1) Refresh-based Optimization proposals, and,
(2) KSM Optimization proposals.

8.1 Refresh Optimization Proposals
DRAMmemory refresh contributes to a considerable portion of DRAM overheads, and there exists
a wide range of prior works that address this overhead. In this section, we categorize some of these
proposals.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:20 Seyed Armin Vakil Ghahani et al.

Table 4. Design characteristics of DSM.

Component Area Power
(𝑚𝑚2) (W)

Mapping Table Cache (MTC) 0.198 0.012
R-Row Counter/Checksum Cache 0.019 0.002
ALU [74] 0.019 0.009
Total 0.236 0.023

8.1.1 Refresh Skipping: This type of memory refresh optimizations tries to remove the refresh of
some rows in memory by leveraging the fact that some regions of memory are not allocated or the
application is error-tolerant.

Isen et al. [36] proposed a scheme that removes the memory refresh for unallocated/freed rows
in DRAM by exploiting program semantics and adding new instructions to ISA to pass the required
information about the region that is allocated or freed from the program to the architecture. DSM
also targets skipping the refresh of non-allocated rows in addition to the same content rows other
than zero without any costly modification to ISA or program.

Researchers in [56] proposed a criticality-aware DRAM refresh skipping mechanism where re-
freshes to the non-critical data are skipped, introducing errors in the execution, as a side effect.
Hence, their scheme is confined to applications that can tolerate errors in the output.This approach
differs from our proposed DSM in that we do not introduce any errors in application execution
due to the lost data integrity caused by refresh skipping. The effectiveness of the flikker [56] is
limited by the amount of non-critical data present in the application program.

Researchers in [29] proposed skipping refreshes to certain rows in stacked DRAM that caches
content from off-chip DRAM.Thus, they targeted the heterogeneousmemory system and proposed
balancing accesses between stacked and off-chip DRAMs by invalidating and skipping refreshes to
data cached in the stacked DRAM. Their proposal of skipping refreshes to stacked DRAM is based
on the fact that stacked DRAM is used as a cache, which implies that off-chip DRAM contains a
copy of valid data. Hence, their scheme does not require any remapping of DRAM rows to other
rows. Also, in their proposal, in scenarios where the refresh skipped (invalidated) data in stacked
DRAM is in the modified state, they incur additional writebacks to off-chip DRAM to ensure the
data integrity in the off-chipDRAM.OurDSMproposal ismuch different compared to their scheme
as we do not target a heterogeneous memory system.

8.1.2 Access-pattern-aware Refresh: There is plenty of work on refresh-aware scheduling in order
to improve the throughput by reducing the conflicts between refresh operations and on-demand
read requests.

Kevin et al. [15] proposed a per-bank refresh scheduling policy that is aware of the requests wait-
ing to be served by memory. Based on the requests waiting for the data to be fetched frommemory,
memory controller issues refreshes to banks that do not have any data waiting to be fetched. This
request-aware per-bank refresh scheduling policy will avert on-demand DRAM request stalls due
to DRAM refreshes.

Kotra et al. [43] proposed a hardware-software co-design scheme which involves changing the
default per-bank refresh scheduling in hardware and exposing it to the system software. In this
work, cognizant of the refresh scheduling policy, the system software performs best-effort sched-
uling of applications on the computing cores such that none of the on-demand requests are stalled
by DRAM refresh.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:21

8.1.3 Retention-time-aware Refresh: Liu et al. [55] observed that different portions of the DRAM
have different retention times. Consequently, they argued that the number of cells that requires
exact 64ms retention time and lose their data with higher refresh cycles are very small, and this
phenomenon is also true for 256ms retention time. As a result, RAIDR [55] tries to apply different
refresh cycles to different memory rows in the system and reduces the DRAM refresh overheads
by significantly reducing the number of required refresh commands.

Researchers in [68] argued that detecting the accurate retention time for DRAM cells statically is
not feasible. This is due to their observation that some DRAM cells experience variable retention-
times, and RAIDR [55] cannot detect these memory cells and data might be lost in such cases.
Qureshi et al. [68] propose AVATAR to detect such memory cells with variable retention-time
before they incur a hard-error and refresh them faster to avoid failure.

We want to emphasize that, as opposed to our proposal, none of these previously proposed
refresh optimizations perform “same data-aware” refresh skipping to DRAM rows. Our scheme
is complementary to most of the approaches discussed above and is expected to improve both
performance and energy-efficiency further when applied in tandem with these proposals.

8.2 KSM Optimization Proposals
KSM optimizations proposed in the past can be classified into hardware-based, software-based,
and hardware-software co-design-based hybrid approaches.

8.2.1 Hardware-based Approaches: There exist multiple hardware-based approaches to exploit
similar values during execution. Tian et al. [75] proposed and evaluated an LLC de-duplication
scheme that merges cache lines with the same value in the LLC and hence, increases the effective
size of the LLC and improves the performance of the system. In comparison, Cheriton et al. [17]
introduced a content-addressable memory systemwherememory is accessedwith “values” instead
of “addresses”. This approach needs a new programming model to access memory locations. For
accessing memory, processor sends a value to memory and checks whether this value exists in
memory. The paper indicates that the number of different values in memory is lower than the
required capacity of memory in servers so that they can de-duplicate all pages with the same
value to one line.

8.2.2 Software-based Approaches: Xia et al. [80] improved the existing KSM module in the ker-
nel by organizing memory into regions with the possibility of same-value pages in each region
and prioritizing regions with a higher probability of same-value pages for KSM lookups. Their ap-
proach also looks up the whole memory for de-duplication, instead of only VMs allocated memory,
increasing the pressure on TLB even more.

8.2.3 Hybrid Approaches: Lin et al. [52] improved the Linux KSM approach by using a GPU to
accelerate the checksum calculation for detecting these pages and changing the key of the tree
traversal of KSM to the checksum that is calculated by GPU, instead of value. Skarlatos et al. [74]
observed that the KSM is a CPU-consumingmodule because it reads all pages of VMs and compares
them together (this requires lots of CPU cycles). As a result, they forward this computation to
memory controller, and OS asks memory controller to check the potential pages for de-duplication.
Then,memory controller looks at these pages, and if it detects a pair of pageswith the same value, it
informs the OS, which in turn changes the page tables accordingly. Raoufi et al. [69] went one step
further and compared pages in-memory and removed the need to bring a page for comparison from
memory to the processor.Wewant to point out that all such variants of KSM have the performance
overhead caused by TLB shoot-downs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

33:22 Seyed Armin Vakil Ghahani et al.

Wewant to emphasize that our work is orthogonal to these prior approaches. If desired, it can be
used in conjunction with any of them, except [17], which radically changes the underlying DRAM
substrate.

9 CONCLUSION
Targeting data center virtualized environments, in this paper, we address the scaling problem of
DRAM memories and the high DRAM refresh overhead in dense DRAM devices. To improve the
performance and energy efficiency of virtualized environments, we propose DSM, a hardware
extension in memory controller that detects the DRAM rows with the same content and only re-
freshes one row per each group of rows that contain similar content. DSMmaintains only one copy
of valid DRAM row per value in a content representative rows called R-rows. DSM ensures fetch-
ing correct data by redirecting the accesses to these representative rows by managing remapping
of DRAM rows. DSM leverages these remappings to skip refreshes to rows that contain similar con-
tent. Our evaluation on a four-core processor simulating latency-sensitive Tailbench and SPEC2006
benchmarks used in virtualized environments show that DSM reduces the 99th percentile memory
access latency by up to 2.01x and reduces the energy consumption of memory by up to 8.5%.

ACKNOWLEDGMENTS
We thankMurali Annavaram for shepherding our paper.We also thank the AMD internal reviewer
Mike Ignatowski and the anonymous reviewers for their constructive feedback. This research is
supported in part by NSF grants #1763681, #1908793, #1931531, #1822923, and #1629129. AMD, the
AMDArrow logo, and combinations thereof are trademarks of AdvancedMicro Devices, Inc. Other
product names used in this publication are for identification purposes only and may be trademarks
of their respective companies.

REFERENCES
[1] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture (ISCA ’15). Association for Computing Machinery, New York, NY, USA, 336–348.

[2] Amazon. 2020. Amazon AWS EC2. https://aws.amazon.com/ec2/
[3] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing memory density by using KSM. In Proceedings of

the linux symposium. Citeseer, Montreal, Canada, 19–28.
[4] Krste Asanović. 2014. FireBox: A Hardware Building Block for 2020 Warehouse-Scale Computers. In 12th USENIX

Conference on File and Storage Technologies (FAST 14). USENIX Association, Santa Clara, CA.
[5] Mohammad Bakhshalipour, Aydin Faraji, Seyed Armin Vakil Ghahani, Farid Samandi, Pejman Lotfi-Kamran, and

Hamid Sarbazi-Azad. 2019. Reducing Writebacks Through In-Cache Displacement. ACM Trans. Des. Autom. Electron.
Syst. 24, 2, Article Article 16 (Jan. 2019), 21 pages.

[6] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, Abbas Mazloumi, Farid Samandi, Mahmood Naderan-Tahan,
Mehdi Modarressi, and Hamid Sarbazi-Azad. 2018. Fast data delivery for many-core processors. IEEE Trans. Comput.
67, 10 (2018), 1416–1429.

[7] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2018. Domino temporal data prefetcher.
In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, Vienna, Austria,
131–142.

[8] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2019. Bingo spa-
tial data prefetcher. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE,
Washington, DC, USA, 399–411.

[9] Mohammad Bakhshalipour, Seyedali Tabaeiaghdaei, Pejman Lotfi-Kamran, andHamid Sarbazi-Azad. 2019. Evaluation
of Hardware Data Prefetchers on Server Processors. ACMComput. Surv. 52, 3, Article Article 52 (June 2019), 29 pages.

[10] Rajeev Balasubramonian, Andrew B. Kahng, NaveenMuralimanohar, Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI
7: New Tools for Interconnect Exploration in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2,
Article Article 14 (June 2017), 25 pages.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

https://aws.amazon.com/ec2/

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:23

[11] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The Datacenter as a Computer: Designing
Warehouse-Scale Machines, Third Edition. Synthesis Lectures on Computer Architecture 13, 3 (2018), i–189.

[12] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (ATEC ’05). USENIX Association, Berkeley, CA, USA, 41–41.

[13] Ishwar Bhati, Zeshan Chishti, Shih-Lien Lu, and Bruce Jacob. 2015. Flexible Auto-Refresh: Enabling Scalable and
Energy-Efficient DRAM Refresh Reductions. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA ’15). Association for Computing Machinery, New York, NY, USA, 235–246.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

[15] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R Alameldeen, Chris Wilkerson, Yoongu Kim, and Onur
Mutlu. 2014. Improving DRAM performance by parallelizing refreshes with accesses. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). IEEE, Orlando, FL, USA, 356–367.

[16] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and Kun Wang. 2014. Enabling FPGAs
in the Cloud. In Proceedings of the 11th ACM Conference on Computing Frontiers (CF ’14). Association for Computing
Machinery, New York, NY, USA, Article Article 3, 10 pages.

[17] David Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P. Stevenson, and Omid Azizi. 2012. HICAMP: Ar-
chitectural Support for Efficient Concurrency-safe Shared Structured Data Access. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII).
ACM, New York, NY, USA, 287–300.

[18] Winter Corp. 2020. WinterCorp. Big Data and Data Warehousing. http://www.wintercorp.com/
[19] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80.
[20] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-
Value Store. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 205–220.

[21] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient and QoS-Aware Cluster Management.
In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). Association for Computing Machinery, New York, NY, USA, 127–144.

[22] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F. Wenisch, and Ricardo Bianchini. 2011. MemScale: Active
Low-Power Modes for Main Memory. SIGARCH Comput. Archit. News 39, 1 (March 2011), 225–238.

[23] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast Remote Memory.
In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14). USENIX Association, Seattle,
WA, 401–414.

[24] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike
Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott,
Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Operation of Cloud-
Lab. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association, Renton, WA, 1–14.

[25] Duncan Elliott, Michael Stumm,W.Martin Snelgrove, Christian Cojocaru, and Robert McKenzie. 1999. Computational
RAM: Implementing Processors in Memory. IEEE Des. Test 16, 1 (Jan. 1999), 32–41.

[26] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019. ComputeDRAM: In-Memory Compute Using Off-the-
Shelf DRAMs. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’52). Association for Computing Machinery, New York, NY, USA, 100–113.

[27] Sukhpal Singh Gill and Rajkumar Buyya. 2018. A Taxonomy and Future Directions for Sustainable Cloud Computing:
360 Degree View. ACM Comput. Surv. 51, 5, Article Article 104 (Dec. 2018), 33 pages.

[28] Maya Gokhale, Bill Holmes, and Ken Iobst. 1995. Processing in Memory: The Terasys Massively Parallel PIM Array.
Computer 28, 4 (April 1995), 23–31.

[29] Nagendra Gulur, R. Govindarajan, and Mahesh Mehendale. 2016. MicroRefresh: Minimizing Refresh Overhead in
DRAM Caches. In Proceedings of the Second International Symposium on Memory Systems (MEMSYS ’16). Association
for Computing Machinery, New York, NY, USA, 350–361.

[30] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren, George Varghese, Geoffrey M. Voelker,
and Amin Vahdat. 2008. Difference Engine: Harnessing Memory Redundancy in Virtual Machines. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley,
CA, USA, 309–322.

[31] Hasan Hassan, Minesh Patel, Jeremie S. Kim, A. Giray Yaglikci, Nandita Vijaykumar, Nika Mansouri Ghiasi, Saugata
Ghose, and Onur Mutlu. 2019. CROW: A Low-Cost Substrate for Improving DRAM Performance, Energy Efficiency,
and Reliability. In Proceedings of the 46th International Symposium on Computer Architecture (ISCA ’19). Association
for Computing Machinery, New York, NY, USA, 129–142.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

http://www.wintercorp.com/

33:24 Seyed Armin Vakil Ghahani et al.

[32] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Archit. News 34, 4 (Sept. 2006),
1–17.

[33] IBM. 2020. IBM Cloud Services. https://www.ibm.com/services/cloud
[34] Intel. 2017. Intel Optane Memory. https://www.intel.com/content/dam/www/public/us/en/documents/product-

briefs/optane-memory-brief.pdf
[35] Anca Iordache, Guillaume Pierre, Peter Sanders, Jose Gabriel de F. Coutinho, and Mark Stillwell. 2016. High Per-

formance in the Cloud with FPGA Groups. In Proceedings of the 9th International Conference on Utility and Cloud
Computing (UCC ’16). Association for Computing Machinery, New York, NY, USA, 1–10.

[36] Ciji Isen and Lizy John. 2009. ESKIMO: Energy Savings Using Semantic Knowledge of Inconsequential Memory
Occupancy for DRAM Subsystem. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO 42). Association for Computing Machinery, New York, NY, USA, 337–346.

[37] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. 2017. Computing in memory with spin-transfer
torque magnetic ram. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 3 (2017), 470–483.

[38] Uksong Kang, Hak-Soo Yu, Churoo Park, Hongzhong Zheng, John Halbert, Kuljit Bains, S Jang, and Joo Sun Choi.
2014. Co-architecting controllers and DRAM to enhance DRAM process scaling. In The Memory Forum.

[39] Harshad Kasture, Davide B. Bartolini, Nathan Beckmann, and Daniel Sanchez. 2015. Rubik: Fast Analytical Power
Management for Latency-Critical Systems. In Proceedings of the 48th International Symposium on Microarchitecture
(MICRO-48). Association for Computing Machinery, New York, NY, USA, 598–610.

[40] Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark suite and evaluation methodology for latency-
critical applications. In 2016 IEEE International Symposium on Workload Characterization (IISWC). IEEE, Providence,
RI, USA, 1–10.

[41] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wilkerson, and Onur Mutlu. 2014. The Effi-
cacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study. In The 2014
ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’14). Association for
Computing Machinery, New York, NY, USA, 519–532.

[42] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. 2016. Neurocube: A Pro-
grammable Digital Neuromorphic Architecture with High-Density 3D Memory. SIGARCH Comput. Archit. News 44,
3 (June 2016), 380–392.

[43] Jagadish B. Kotra, Narges Shahidi, Zeshan A. Chishti, and Mahmut T. Kandemir. 2017. Hardware-Software Co-design
to Mitigate DRAM Refresh Overheads: A Case for Refresh-Aware Process Scheduling. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
’17). ACM, New York, NY, USA, 723–736.

[44] Jagadish B. Kotra, Haibo Zhang, Alaa R. Alameldeen, ChrisWilkerson, andMahmut T. Kandemir. 2018. CHAMELEON:
A Dynamically Reconfigurable Heterogeneous Memory System. In Proceedings of the 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO-51). IEEE Press, Fukuoka, Japan, 533–545.

[45] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G Friedman, Avinoam Kolodny, and
Uri C Weiser. 2014. MAGIC—Memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs 61, 11
(2014), 895–899.

[46] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett Witchel. 2016. Coordinated and
Efficient Huge Page Management with Ingens. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). USENIX Association, Savannah, GA, 705–721.

[47] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales of the Tail: Hardware, OS, and
Application-Level Sources of Tail Latency. In Proceedings of the ACM Symposium on Cloud Computing (SOCC ’14).
Association for Computing Machinery, New York, NY, USA, 1–14.

[48] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016. Pinatubo: A Processing-in-Memory
Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Memories. In Proceedings of the 53rd Annual
Design Automation Conference (DAC ’16). Association for Computing Machinery, New York, NY, USA, Article Article
173, 6 pages.

[49] Zheng Li, Selome Tesfatsion, Saeed Bastani, Ahmed Ali-Eldin, Erik Elmroth, Maria Kihl, and Rajiv Ranjan. 2017. A
survey on modeling energy consumption of cloud applications: deconstruction, state of the art, and trade-off debates.
IEEE Transactions on Sustainable Computing 2, 3 (July 2017), 255–274.

[50] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K. Reinhardt, and Thomas F. Wenisch.
2009. Disaggregated Memory for Expansion and Sharing in Blade Servers. SIGARCH Comput. Archit. News 37, 3 (June
2009), 267–278.

[51] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang, Parthasarathy Ranganathan, and
Thomas F. Wenisch. 2012. System-Level Implications of Disaggregated Memory. In Proceedings of the 2012 IEEE 18th
International Symposium on High-Performance Computer Architecture (HPCA ’12). IEEE Computer Society, USA, 1–12.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

https://www.ibm.com/services/cloud
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-memory-brief.pdf

DSM: A Case for Hardware-Assisted Merging of DRAM Rows with Same Content 33:25

[52] Wei-Cheng Lin, Chia-Heng Tu, Chih-Wei Yeh, and Shih-Hao Hung. 2017. GPU acceleration for kernel samepage
merging. In 2017 IEEE 23rd International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, IEEE, Hsinchu, Taiwan, 1–6.

[53] Linux. 2009. Linux KSM - Kernel Samepage Merging (KSM). https://www.linux-kvm.org/page/KSM
[54] Jamie Liu, Ben Jaiyen, Yoongu Kim, ChrisWilkerson, and OnurMutlu. 2013. An Experimental Study of Data Retention

Behavior in Modern DRAMDevices: Implications for Retention Time Profiling Mechanisms. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). Association for Computing Machinery, New
York, NY, USA, 60–71.

[55] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. 2012. RAIDR: Retention-Aware Intelligent DRAM Refresh.
SIGARCH Comput. Archit. News 40, 3 (June 2012), 1–12.

[56] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. 2011. Flikker: Saving DRAM Refresh-
power Through Critical Data Partitioning. In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA, 213–224.

[57] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru Stanescu, Shashwat Gupta, Daniel Sanchez,
and Nathan Beckmann. 2020. Livia: Data-Centric Computing Throughout the Memory Hierarchy. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 417–433.

[58] David Meisner, Junjie Wu, and Thomas F. Wenisch. 2012. BigHouse: A Simulation Infrastructure for Data Center
Systems. In Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS ’12). IEEE Computer Society, USA, 35–45.

[59] Microsoft. 2020. Microsoft Azure. https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
[60] Amirhossein Mirhosseini, Akshitha Sriraman, andThomas FWenisch. 2019. Enhancing server efficiency in the face of

killer microseconds. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE,
Washington, DC, USA, 185–198.

[61] Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jeffrey Stuecheli, and José F. Martínez. 2013. Understanding and
Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13). Association for Computing Machinery, New York, NY, USA, 48–59.

[62] Kate Nguyen, Kehan Lyu, Xianze Meng, Vilas Sridharan, and Xun Jian. 2018. Nonblocking Memory Refresh. In
Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA ’18). IEEE Press, Los Angeles,
California, 588–599.

[63] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot. 2014. Scale-out NUMA. SIG-
PLAN Not. 49, 4 (Feb. 2014), 3–18.

[64] Minoru Oikawa, Atsushi Kawai, Kentaro Nomura, Kenji Yasuoka, Kazuyuki Yoshikawa, and Tetsu Narumi. 2012. DS-
CUDA: A Middleware to Use Many GPUs in the Cloud Environment. In Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis (SCC ’12). IEEE Computer Society, USA, 1207–1214.

[65] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge Pages Actually Useful. SIGPLAN Not. 53, 2
(March 2018), 679–692.

[66] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton, Christoforos Kozyrakis, Randi
Thomas, and Katherine Yelick. 1997. A Case for Intelligent RAM. IEEE Micro 17, 2 (March 1997), 34–44.

[67] Nathan Pemberton, John D Kubiatowicz, and Randy H Katz. 2018. Enabling Efficient and Transparent Remote Memory
Access in Disaggregated Datacenters. Ph.D. Dissertation. Master’s thesis, University of California at Berkeley, Berkeley,
CA.

[68] Moinuddin K Qureshi, Dae-Hyun Kim, Samira Khan, Prashant J Nair, and Onur Mutlu. 2015. AVATAR: A variable-
retention-time (VRT) aware refresh for DRAM systems. In 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, Rio de Janeiro, Brazil, 427–437.

[69] Mehrnoosh Raoufi,QuanDeng, Youtao Zhang, and Jun Yang. 2019. PageCmp: Bandwidth Efficient Page Deduplication
through In-memory Page Comparison. In 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
Miami, FL, USA, 82–87.

[70] Samsung. 2020. Samsung DDR4. https://www.samsung.com/semiconductor/dram/ddr4/
[71] Andreas Sandberg, Nikos Nikoleris, Trevor E Carlson, Erik Hagersten, Stefanos Kaxiras, and David Black-Schaffer.

2015. Full speed ahead: Detailed architectural simulation at near-native speed. In 2015 IEEE International Symposium
on Workload Characterization. IEEE, Atlanta, GA, USA, 183–192.

[72] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin
Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and et al. 2013. RowClone: Fast and Energy-Efficient in-
DRAM Bulk Data Copy and Initialization. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-46). Association for Computing Machinery, New York, NY, USA, 185–197.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

https://www.linux-kvm.org/page/KSM
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://www.samsung.com/semiconductor/dram/ddr4/

33:26 Seyed Armin Vakil Ghahani et al.

[73] Vivek Seshadri, Donghyuk Lee,ThomasMullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,Michael A. Kozuch,
Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Opera-
tions Using Commodity DRAM Technology. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50 ’17). Association for Computing Machinery, New York, NY, USA, 273–287.

[74] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. 2017. Pageforge: A Near-memory Content-aware Page-
merging Architecture. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-50 ’17). ACM, New York, NY, USA, 302–314.

[75] Yingying Tian, Samira M. Khan, Daniel A. Jiménez, and Gabriel H. Loh. 2014. Last-level Cache Deduplication. In
Proceedings of the 28th ACM International Conference on Supercomputing (ICS ’14). ACM, New York, NY, USA, 53–62.

[76] Josep Torrellas. 2012. FlexRAM: Toward an Advanced Intelligent Memory System: A Retrospective Paper. In Proceed-
ings of the 2012 IEEE 30th International Conference on Computer Design (ICCD 2012) (ICCD ’12). IEEE Computer Society,
USA, 3–4.

[77] Ubuntu. 2020. Ubuntu Server. https://www.ubuntu.com/server
[78] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker. 2013.

Low Latency via Redundancy. In Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’13). Association for Computing Machinery, New York, NY, USA, 283–294.

[79] Carl A. Waldspurger. 2003. Memory Resource Management in VMware ESX Server. SIGOPS Oper. Syst. Rev. 36, SI
(Dec. 2003), 181–194.

[80] Nai Xia, Chen Tian, Yan Luo, Hang Liu, and Xiaoliang Wang. 2018. UKSM: Swift Memory Deduplication via Hierar-
chical and Adaptive Memory Region Distilling. In 16th USENIX Conference on File and Storage Technologies (FAST 18).
USENIX Association, Oakland, CA, 325–340.

[81] Dongli Zhang, Moussa Ehsan, Michael Ferdman, and Radu Sion. 2014. DIMMer: A Case for Turning off DIMMs in
Clouds. In Proceedings of the ACM Symposium on Cloud Computing (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1–8.

[82] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and Lingjia Tang. 2014. SMiTe: Precise QoS Prediction on Real-
System SMT Processors to Improve Utilization in Warehouse Scale Computers. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-47). IEEE Computer Society, USA, 406–418.

[83] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. 2016. Treadmill: Attributing the Source of Tail Latency
through Precise Load Testing and Statistical Inference. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA ’16). IEEE Press, Seoul, Republic of Korea, 456–468.

Received January 2020; revised February 2020; accepted March 2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 33. Publication date: June 2020.

https://www.ubuntu.com/server

	Abstract
	1 Introduction
	2 Background
	2.1 Basic DRAM Organization
	2.2 DRAM Refresh
	2.3 RowClone
	2.4 Kernel Same-Page Merging

	3 Motivation
	4 DSM Design
	4.1 Representative Rows
	4.2 Mapping Table
	4.3 Caching DSM Metadata
	4.4 Putting It All Together

	5 Discussion
	5.1 Interactions with Cache Coherence
	5.2 Interactions with KSM
	5.3 Unallocated Pages

	6 Methodology
	6.1 Experimental Setup

	7 Evaluation
	7.1 Performance Improvement Results
	7.2 Tail Latency Improvement Results
	7.3 Energy Improvement Results
	7.4 Bandwidth Consumption
	7.5 Memory Refresh Skipping Results
	7.6 DSM Content Similarity Results
	7.7 Mapping Table Cache Hit Rate Results
	7.8 DRAM Capacity Sensitivity Results
	7.9 Design Characteristics

	8 Related Work
	8.1 Refresh Optimization Proposals
	8.2 KSM Optimization Proposals

	9 Conclusion
	Acknowledgments
	References

